Humans May Be Reversing The Climate Clock By 50 Million Years

Future climate analogs for the years 2020, 2050, 2100 and 2200 according to three well-established models. If greenhouse gas emissions are not curbed, the study says, the climate will continue to warm until it begins to resemble the Eocene in 2100. Credit

In a study published in the Proceedings of the National Academy of Sciences, researchers show that humans are reversing a long-term cooling trend tracing back at least 50 million years. And it’s taken just two centuries.

By 2030, Earth’s climate is expected to resemble that of the mid-Pliocene, going back more than 3 million years in geologic time. Without reductions in our greenhouse gas emissions, our climates by 2150 could compare to the warm and mostly ice-free Eocene, an epoch that characterized the globe 50 million years ago.

All of the species on Earth today had an ancestor that survived the Eocene and the Pliocene, but whether humans and the flora and fauna we are familiar with can adapt to these rapid changes remains to be seen. The accelerated rate of change appears to be faster than anything life on the planet has experienced before.

The new study builds upon work Williams and colleagues first published in 2007, which compared future climate projections to historical climate data from the early 20th century. The new study relies on extensive data about climate conditions to probe much deeper in Earth’s geologic past and expand those comparisons.

Researchers can use the past as a yardstick to understand the future, which is so different from anything we have experienced in our lifetimes. People have a hard time projecting what the world will be like five or 10 years from now. This is a tool for predicting that — how we head down those paths, and using deep geologic analogs from Earth’s history to think about changes in time.

During the Eocene, Earth’s continents were packed more closely together and global temperatures averaged 13 degrees Celsius warmer than they are today. Dinosaurs had recently gone extinct and the first mammals, like ancestral whales and horses, were spreading across the globe. In the Pliocene, North and South America joined tectonically, the climate was arid, land bridges allowed animals to spread across continents and the Himalayas formed. Temperatures were between 1.8 and 3.6 degrees Celsius warmer than they are today.

Researchers examined the similarities between future climate projections as set forth by the Intergovernmental Panel on Climate Change Fifth Assessment Report and several periods of geologic history. These included the Early Eocene, the mid-Pliocene, the Last Interglacial (129 to 116 thousand years ago), the mid-Holocene (6,000 years ago), the pre-industrial era (before A.D. 1850) and the early 20th century.

They used Representative Concentration Pathway 8.5 (RCP8.5), which represents a future climate scenario in which we do not mitigate greenhouse gas emissions, and RCP4.5, a scenario in which we moderately reduce greenhouse gas emissions, and climate simulations using three different but well-established models: the Hadley Centre Coupled Model version 3, the Goddard Institute for Space Studies ModelE2-R and the Community Climate System Model.

While not without their flaws, each of these models represents the best available data and state-of-the-art techniques. Under both scenarios and across each model, compared to previous eras, the Earth’s climate most closely resembled the mid-Pliocene by 2030 (under RCP8.5) or 2040 (under RCP4.5). Under the greenhouse gas stabilization scenario of RCP4.5, the climate then stabilizes at mid-Pliocene-like conditions, but under the higher greenhouse gas emissions of RCP8.5, the climate continues to warm until it begins to resemble the Eocene in 2100, achieving Eocene-like conditions more broadly by 2150.The models showed these deep-geological climates emerging first from the center of continents and then expanding outward over time. Temperatures rise, precipitation increases, ice caps melt and climates become temperate near the Earth’s poles.

The study also showed that under RCP8.5, “novel” climates emerge across nearly 9 percent of the planet. These are conditions that do not have known geologic or historical precedent and they concentrate in eastern and southeastern Asia, northern Australia and the coastal Americas.

Current Issue