Energy Harvested From Evaporation Could Power Much Of US

2017-09-29 09:04:20

Credit: pixabay.com

Credit: pixabay.com

In the first evaluation of evaporation as a renewable energy source, researchers at Columbia University find that U.S. lakes and reservoirs could generate 325 gigawatts of power, nearly 70 percent of what the United States currently produces.

Though still limited to experiments in the lab, evaporation-harvested power could in principle be made on demand, day or night, overcoming the intermittency problems plaguing solar and wind energy. The researchers' calculations are outlined in the Sept. issue of Nature Communications.

Evaporation is nature's way of cycling water between land and air. Sahin has previously shown how this basic process can be exploited to do work. One machine developed in his lab, the so-called Evaporation Engine, controls humidity with a shutter that opens and closes, prompting bacterial spores to expand and contract. The spores' contractions are transferred to a generator that makes electricity. The current study was designed to test how much power this process could theoretically produce.

One benefit of evaporation is that it can be generated only when needed. Solar and wind power, by contrast, require batteries to supply power when the sun isn't shining and wind isn't blowing. Batteries are also expensive and require toxic materials to manufacture.

Evaporation technology can also save water. In the study, researchers estimate that half of the water that evaporates naturally from lakes and reservoirs into the atmosphere could be saved during the energy-harvesting process. In their model, that came to 25 trillion gallons a year, or about a fifth of the water Americans consume.

States with growing populations and sunnier weather can best capitalize on evaporation's capacity to generate power and reduce water waste, in part because evaporation packs more energy in warm and dry conditions, the researchers say. Drought-prone California, Nevada and Arizona could benefit most.

The researchers simplified their model in several ways to test evaporation's potential. They limited their calculations to the United States, where weather station data are readily accessible, and excluded prime locations such as farmland, rivers, the Great Lakes, and coastlines, to limit errors associated with modeling more complex interactions. They also made the assumption that technology to harvest energy from evaporation efficiently is fully developed.