Rosetta s Comet Contains Ingredients For Life

Admin

2016-05-29 04:25:28

Credit: ESA

Credit: ESA

Ingredients crucial for the origin of life on Earth, including the simple amino acid glycine and phosphorus, key components of DNA and cell membranes, have been discovered at Comet 67P/Churyumov-Gerasimenko.

The possibility that water and organic molecules were brought to the early Earth through impacts of objects like asteroids and comets have long been the subject of important debate.

While Rosetta's ROSINA instrument already showed a significant difference in composition between Comet 67P/C-G's water and that of Earth, the same instrument has now shown that even if comets did not play as big a role in delivering water as once thought, they certainly had the potential to deliver life's ingredients.

While more than 140 different molecules have already been identified in the interstellar medium, amino acids could not be traced. However, hints of the amino acid glycine, a biologically important organic compound commonly found in proteins, were found during NASA's Stardust mission that flew by Comet Wild 2 in 2004, but terrestrial contamination of the collected dust samples during the analysis could not be ruled out. Now, for the first time, repeated detections at a comet have been confirmed by Rosetta in Comet 67P/C-G's fuzzy atmosphere, or coma.

The first detection was made in October 2014, while most measurements were taken during the perihelion in August 2015 -- the closest point to the Sun along the comet's orbit while the outgassing was strongest. "This is the first unambiguous detection of glycine in the thin atmosphere of a comet," says Kathrin Altwegg, principal investigator of the ROSINA instrument at the Center of Space and Habitability of the University of Bern and lead author of the study. The results are now being published in Science.

Primordial chemistry in the ice

Glycine is very hard to detect due to its non-reactive nature: it sublimates at slightly below 150°C, meaning that little is released as gas from the comet's surface or subsurface due to its cold temperatures. "We see a strong correlation of glycine to dust, suggesting that it is probably released from the grains' icy mantles once they have warmed up in the coma, perhaps together with other volatiles," says Altwegg. At the same time, the researchers also detected the organic molecules methylamine and ethylamine, which are precursors to forming glycine. Unlike other amino acids, glycine is the only one that has been shown to be able to form without liquid water. "The simultaneous presence of methylamine and ethylamine, and the correlation between dust and glycine, also hints at how the glycine was formed," says Altwegg.

Phosphorus, a key element for terrestrial life

Another exciting detection by ROSINA made for the first time at a comet is of phosphorus. It is a key element in all living organisms and is found in the structural framework of DNA and RNA.

"The multitude of organic molecules already identified by ROSINA, now joined by the exciting confirmation of fundamental ingredients like glycine and phosphorus, confirms our idea that comets have the potential to deliver key molecules for prebiotic chemistry," says Matt Taylor, Rosetta project scientist of the European Space Agency ESA. "Demonstrating that comets are reservoirs of primitive material in the Solar System, and vessels that could have transported these vital ingredients to Earth, is one of the key goals of the Rosetta mission, and we are delighted with this result."

 

 

Two 'young' craters discovered on Moon

A Southwest Research Institute-led team of scientists discovered two geologically young craters - one 16 million, the other between 75 and 420 million, years old -- in the Moon's darkest regions.

"These 'young' impact craters are a really exciting discovery," said SwRI Senior Research Scientist Dr. Kathleen Mandt, who outlined the findings in a paper published by the journal Icarus. "Finding geologically young craters and honing in on their age helps us understand the collision history in the solar system."

Key to this discovery was the SwRI-developed Lyman-Alpha Mapping Project (LAMP) instrument aboard the Lunar Reconnaissance Orbiter (LRO). LAMP uses the far-ultraviolet Lyman-alpha band skyglow and light from ultraviolet-bright stars LAMP to "see" in the dark and image the permanently shaded regions of the Moon. Using LAMP and LRO's Mini-RF radar data, the team mapped the floors of very large, deep craters near the lunar south pole. These deep craters are difficult to study because sunlight never illuminates them directly. Tiny differences in reflectivity, or albedo, measured by LAMP allowed scientists to discover these two craters and estimate their ages.

"We study planetary geology to understand the history of solar system formation," said SwRI's Dr. Thomas Greathouse, LAMP deputy principal investigator. "It is exciting and extremely gratifying to happen upon a unique and unexpected new method for the detection and age determination of young craters in the course of nominal operations."

Collisions in space have played an important role in the formation of the solar system, including the formation of the Moon. Impact craters tell the history of collisions between objects in the solar system.

Because the Moon has been peppered with impacts, its surface serves as a record of its past. Determining when collisions occurred helps scientists map the motion of objects in the solar system throughout its history. Craters that are young on geological timescales (millions of years) also provide information on the frequency of collisions.

When a small object collides with a larger object, such as the Moon, the impact creates a crater on the larger body. Craters can be a few feet in diameter or several miles wide. During the impact, the material ejected forms a blanket of material surrounding the crater. The ejecta blankets of "fresh," relatively young craters have rough surfaces of rubble and a sprinkling of condensed, bright dust. Over millions of years, these features undergo weathering and become covered with layers of fluffy, dark dust.

Scientists determined that the areas around the two craters were brighter and rougher than the surrounding landscape. The team estimated the age of one crater at about 16 million years. The other crater's rough extended ejecta blanket had faded, showing that this crater must be at least 75 million years old. But time would have completely covered the ejecta blanket in fluffy dust within 420 million years, providing an upper limit on its age. Other images, produced using laser altimetry and sunlight scattered off crater walls, provided details about topography, surface features, and material properties.

"Discovering these two craters and a new way to detect young craters in the most mysterious regions of the Moon is particularly exciting," said Mandt. "This method will be useful not only on the Moon, but also on other interesting bodies, including Mercury, the dwarf planet Ceres, and the asteroid Vesta."